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Abstract 

 

Agriculture production is a crucial economic backbone for any 

country and is vital in meeting human food needs. At the same time, 

plant disease poses a significant threat to this sector, leading to 

decreased yields and heavy losses. Automated systems for disease 

detection and classification can aid in combating this issue and 

promoting growth and development. In recent years, deep learning 

approaches have demonstrated promising results in various artificial 

intelligence tasks, specifically in the Smart Agriculture domain. 

Smart Agriculture applications include Plant disease detection, 

water and soil management, crop distribution, crop cultivation, fruit 

counting, and yield prediction. This paper presents an integrated and 

enhanced approach for detecting citrus leaf disease detection using 

a deep convolutional neural network. The proposed model can 

distinguish healthy citrus leaves from seven common diseases: 

bacterial spot, black spot, canker, citrus powdery mildew, greening, 

melanose, and health. The proposed model extracts the 

complementary features by incorporating multiple hidden layers and 

using data augmentation for improved image recognition and 

classification. The proposed model is tested against other deep 

learning models on the citrus and Plant Village dataset and 

outperformed previous studies in various performance measurement 

metrics. With a test accuracy of 97.66%, our model serves as a 

reliable tool for citrus plant disease detection.  
   

Keywords: Citrus Leaves, Disease Detection, Disease 
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Introduction 

In Pakistan, sustainable agricultural expansion is essential for rural development and food security. It generates 

22.7% of the GDP, employs about 37.4% of the labor force, manages the rural environment, and acts as an 

environmental buffer to safeguard and improve the climate-resilient ecosystem and production (Naqvi, Wang, 

Malik, Umar, Hasnain, Sohail, et al., 2022).  The agriculture industry had a tremendous increase of 4.40 percent 

between 2021 and 2022, exceeding the goal of 3.5% and the growth of 3.48% the previous year.  Second, only 

to bananas in terms of global fruit output, citrus is grown on more than 200,400 hectares and produces 158 

million tons of fruit annually.  China produces the most citrus fruit on the planet, with 35.2% of all fruit 

production, or 2.4 million tons, produced in the citrus industry in 2014–2015. Mandarins (Kinnow), oranges, 

grapefruit, lemons, and limes are citrus fruits, and mandarins (Kinnow) are particularly significant to Pakistan 

(Siddique & Garnevska, 2018). There are more than 140 countries in the world where citrus is grown. Brazil, China, 

Mexico, the United States, Spain, and India are the world's top citrus-producing nations. Pakistan is one of the top 

ten countries in the world for citrus production (Source: FAOSTAT). With a 95% market share, Kinnow (Citrus 

reticulate) is Pakistan’s most common citrus species. Punjab portions 94% and 96% in the area and production of 

citrus, respectively (Catara & Polizzi, 1999). Citrus has a high nutritional value and is a rich source of vitamins C 

and E, sugar, organic acids, amino acids, and minerals, including calcium and magnesium. The average yield in 

Pakistan is 2.36million tons, spread across 1,000 hectares, with an annual export of 282,000 tons, selling for 7,313 

million rupees (Dandurand &. Menge, 1992). However, diseases are an important factor that restricts citrus 

growth and development. The disease affects different parts of the citrus plants, including the stem, 

leaves, fruits, and branches. The traditional methods for disease detection are manual and rely on human 

expertise, observation, and judgment. 

 

There are problems of inaccurate identification and low efficiency, researcher user image processing, computer 

vision, and different machine learning and deep learning techniques to detect plant diseases. Citrus fruit plants 

are very vulnerable to various infections and bacterial diseases, including Bacterial Spot, Black Spot, Canker, 

Citrus Powdery Mildew, Greening, and Melanose; they represent a persistent threat to citrus farming and have a 

significant economic impact on all citrus-growing regions worldwide (Mendonça, Zambolim, & Badel, 2017).  

Citrus trees can get the highly contagious canker, typically found on the leaves or fruit. In recent years, deep 

learning techniques have emerged as a powerful tool for disease detection in various fields, including agriculture.  

Different Machine learning models like SVM (Kour & Arora, 2019), Random forest (Wójtowicz, Piekarczyk, 

Czernecki, & Ratajkiewicz, 2021), Ensemble, and methods (Hu, Yin, Wan, Zhang, & Fang, 2020) use image 

processing to obtain disease feat. However, these machine learning models use manual and hand-crafted features, 

which are highly subjective. In contrast, on the other hand, deep learning models, specifically convolutional neural 

networks (CNNs), have shown promising results in detecting and classifying various citrus plant diseases (Liaqat, 

Hassan, Shoaib, Khurshid, & Shamseldin, 2022; Sultana, Sufian, & Dutta, 2018). This study proposes a deep 

learning-based approach for detecting citrus plant leaf disease using CNNs. The proposed model distinguishes 

healthy citrus leaves from common diseases, including bacterial spots, blackspots, canker, citrus powdery 

mildew, greening, melanose, and health.  The model incorporates multiple hidden layers and data augmentation 

techniques to extract relevant features and improve image recognition and classification accuracy. The proposed 

model is tested on a citrus leaves dataset and evaluated against other deep-learning models. The research study results 

are expected to provide a reliable and efficient tool for citrus plant disease detection at early stages and contribute 

to the sustainable expansion of the agriculture industry in Pakistan. 
 

Literature Review 

Plant diseases can significantly impact food safety and agricultural product output. Many automated systems 

developed for plant disease detection have been based on digital images, allowing for the swift implementation 

of algorithms. The challenges associated with the autonomous identification of plant illness have been addressed 

using traditional machine learning techniques such as Support Vector Machines (SVMs), Multilayer Perceptron 

Neural Networks, and Decision Trees. Varshney et al. (2022) propose a novel DL method for leaf plant disease 

detection utilizing a transfer learning methodology, where a Convolutional Neural Network (CNN) is 

utilized as a feature extractor, and SVM is employed for classification. The proposed model is evaluated using a 
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benchmark dataset called PlantVillage. Results indicate that the proposed model outperforms previous work, 

achieving an accuracy of 88.77% on a training dataset. Bharateet et al. (2017) provide an overview of various 

image-processing techniques used for plant disease detection. These methods include research on disease 

detection in various plants such as apples, grapes, peppers, pomegranates, and tomatoes. Researchers have 

developed various methods for recognizing and classifying different types of fruit diseases, such as the YCR 

color model, the HSV color model (Dhanesha & Shrinivasa, 2019), and VGG16. Dhanesha et al. (2018) used the 

YCR color model to segment the Arecanut bunches, using volumetric overlap error and dice similarity 

coefficient to evaluate the degree of similarity between the input image and the ground truth. Ghosal and Sarkar 

(2020) developed a VGG16 model (Qassim, Verma, & Feinzimer, 2018) that incorporates transfer learning to 

diagnose diseases affecting rice plants.  The researchers trained this classification system with the help of 

four different image classes, and now VGG16 is accurate up to 92.4% of the time. Kumar et al. ( 2 0 2 0 )  

developed a system that can recognize illnesses based on the appearance of the leaves of coffee plants, using radial 

basis function neural networks, fuzzy logic-based expert systems, transfer learning techniques, and CNN with 

data augmentation.  Coulibaly et al. (2019) use a GG16 model trained through transfer learning to detect diseases 

in millet crops; 124 images of leaves are separated into two categories: those with mild infections and those that 

appeared healthy. The level of precision achieved by the VGG16 model is 95%.  

 

Deep Learning Models for Plant Disease Detection 

 

Deep learning models have been effectively used to detect plant diseases by recognizing patterns and features in 

images of both healthy and diseased plants through training on large datasets. Convolutional Neural Networks 

(CNNs) are a specific type of deep learning model that has shown success in classifying images of plant leaves, 

and RetinaNet (Wang, Wang, Zhang, Dong, & Wei, 2019) is another example of a deep learning model that can 

detect multiple diseases in a single image, which can help farmers to prevent disease spread and increase crop 

yield. 

 

Pavan et al. (2021) present a comprehensive review of convolutional neural networks (CNNs) for plant disease 

detection from images. The authors discuss various CNN architectures, such as AlexNet, VGG, and ResNet, and 

their performance on different plant species and diseases. They also discuss the challenges and limitations of using 

CNNs for plant disease detection and the current state of the art. Saleem et al. (2020) employed DL meta-

architectures and TensorFlow object detection framework to tackle the intricate tasks of identifying the location 

and categorizing diseases in plant leaves.   This led to high accuracy in recognizing different types of damaged 

and healthy leaves, achieving a mean average precision of 73.07%. The methodology can be utilized in other areas 

of agriculture and has the potential for future utilization in the real-time detection of plant diseases in controlled and 

non-controlled environments. Tan et al. (2020) introduce EfficientDet, a family of convolutional neural network 

(CNN) models designed to be accurate and efficient for object detection tasks. The authors present results of using 

EfficientDet models for plant disease detection, showing that they achieve comparable or higher accuracy than 

existing methods while being more scalable and efficient. 

 

Image Datasets for Plant Disease Detection 

 

Image datasets for plant disease detection typically consist of many images of both healthy and diseased plants. They 

can include a wide variety of plant species and disease types. These datasets train deep-learning models for plant 

disease detection and are critical for developing accurate and reliable algorithms. They are also used to evaluate 

and compare the performance of different models on a common benchmark. Table 1 lists various datasets that 

are used for plant disease detection. The plant species and disease categories also vary among the datasets. Some 

datasets, such as PlantVillage and Embrapa Dataset, have specific information about the number of plant species 

and disease categories included. Other datasets, such as IPM and Bing, do not provide this information. 

Additionally, the backgrounds of the images in the datasets vary, with some taken in lab conditions with fixed 

backgrounds, while others are taken in real-field conditions.  

 

 



  
Multi-Disciplinary Publishing Institute Pakistan                                                                                                                 Vol. 01, Issue. 02 
 

         

Open Access Digital Management and Governance Review 

 
Mahmood, K., Kundi, G.M., & Mughal, Y.H. (2025), 1-21 

 

4 
 

 

Table 1 

Plant Diseases Datasets 

 

Dataset Name Institution Number of 

Images 

Plant 

Species 

Disease 

Categories 

Background 

PlantVillage 

(Hughes & Salathe, 

2015)  

Penn State University 54,305 14 38 Lab conditions with a 

fixed background 

IPM[24]  N/A 119 N/A N/A Fixed and background 

conditions 

      

PlantVillage 

(extended) 

(Ferentinos, 2018)  

N/A 87,848 25 58 Infield and laboratory 

conditions 

Embrapa Dataset 

(Barbedo, 

Koenigkan, 

Halfeld-Vieira, et 

al., 2018)  

Embrapa Agriculture 

Institute 

46,513 18 93 In-field 

Strawberry 

Dataset (Nie, L. 

Wang, Ding, &M. 

Xu, 2019)  

N/A 3531 N/A 4 N/A 

Rice dataset 

(Rahman, Arko, 

Ali, 2020)  

Bangladesh Rice Research 

Institute 

1426 N/A N/A Real-field conditions 

Apple Dataset 

(Thapa, Zhang, 

Snavely, 2020)  

N/A 3651 N/A 4 N/A 

Maize Dataset 

(Chen, Chen, 

Zhang, 2020)  

Fujian Institute of 

Subtropical Botany 

481 1 4 In-field 

Rice Dataset  Fujian Institute of 

Subtropical Botany 

560 N/A 5 Laboratory and in-

field 

PlantDoc (Wang, 

Du, Wu, 2021)  

 2598 N/A 17 Field 

Turkey-

PlantDataset 

(Kumar, 

Belhumeur, 

Biswas, 2012)  

Agricultural Faculty of 

Bingol and Inonu 

Universities 

4447 N/A 15 N/A 

 

Other datasets on plant diseases are also available in the literature, not limited to (Falaschetti, Manoni, Di 

Leo, Pau, Tomaselli, & Turchetti, 2022; Li & Yang, 2020). 

 

Transfer Learning for Plant Disease Detection 

 

Transfer learning is a technique used in deep learning to utilize pre-trained models on related tasks to improve 

performance and reduce training time for a new task. It is especially useful when data is limited. It allows for better 

generalization and helps avoid overfitting by fine-tuning the pre-trained models on large datasets for the new 

task (Tan, Sun, Kong, Zhang, Yang, & Liu, 2018). Sagar et al. (2021) address the problem of multi-class 

classification and show how neural networks can be used for plant disease recognition in the context of image 
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classification. The study compares the performance of transfer learning approaches for plant disease detection, 

including fine-tuning, feature extraction, and training on t h e  publicly available Plant Village dataset, which 

has 38 classes of diseases.  Five different architectures are compared, including VGG16, ResNet50, 

InceptionV3, InceptionResNet, and DenseNet169 as the backbones for the network; ResNet50 outperforms other 

networks on the test set. Various metrics such as accuracy, precision, recall, F1 score, and class-wise confusion 

metrics are used for evaluation. The model achieved the best results using ResNet50 with an accuracy of 0.982, 

precision of 0.94, recall of 0,.94, and F1 score of 0.94.  

 

Other studies that use transfer learning for plant disease detection can be found at Udawant and Srinath (2022), 

Sharma, Nath, Sharma, Kumar, and Chaudhary (2022) Vallabhajosyula, Sistla, and Kolli (2022). The study proposed 

a deep neural network model for automatically detecting citrus fruit and leaves diseases. The model achieved high 

accuracy compared to baseline machine learning models and outperformed a four-convolutional-layer CNN model. 

Future work involves exploring different datasets, using larger datasets, and investigating other deep learning 

architectures and techniques (Khattak, Asghar, Batool, Asghar, Ullah, Al-Rakhami, et al., 2021). The study 

successfully generated high-quality citrus disease and nutritional deficiency images using FastGAN2 and achieved 

high accuracy in classification. The method shows potential for aiding fruit farmers in disease identification. Further 

development includes extending the approach to other plant diseases and creating a user-friendly application or 

software (Dai, Guo, Li, Song, Lyu, Sun et al, 2023). The study used CNN models to conduct a hyperspectral imaging 

analysis of citrus fruit peels. The results demonstrated that training the CNN model with PCA-selected bands yielded 

higher classification accuracy than randomly selected bands. Moreover, using images with multiple fruit instances 

resulted in slightly better classification performance than using single fruit instances. The findings contribute to 

developing efficient and accurate citrus peel condition detection methods. Future work involves deploying the trained 

CNN model in real-time systems, exploring generalizability, optimizing model parameters, and expanding the research 

to other agricultural applications (Yadav, Burks, Frederick, Qin, Kim, & Ritenour, 2022).  

 

The study proposes the MF-RANet network for citrus disease recognition. AMSR preprocessing improves accuracy. 

The ELU activation function is effective. MF-RANet outperforms other networks. Limitations and future work were 

identified (Yang, Liao, Zhao, Zhou, He, & Li, 2022). The authors Atila, Uçar, Akyol, and Uçar (2021)  in this research 

study proposed an EfficientNet deep learning model for plant disease detection. This research study uses the 

PlantVillage dataset to investigate various diseases in plants using different deep learning models. All the models were 

trained on original and augmented datasets comprising 55,448 and 61,486 images. The results obtained from the 

EfficientNet B4 on the augmented dataset achieve an accuracy of 99.91% and 99.07% accuracy score on the original 

dataset with compared to other transfer learning and deep learning models. The reason behind the high accuracy score 

is due to 90% training data, whereas only 7% data is used for testing and 3% for validation purposes (Gayathri, Wise, 

Shamini, & Muthukumaran, 2020). Tea leaf disease was addressed in this paper using convolutional neural networks. 

Four diseases were identified and classified in this research study by applying a CNN with data augmentation and 

annotation. The authors achieve an accuracy of 94% for the red scab disease, and for the remaining three diseases, tea 

leaf blight, blight disease, and tea red leaf spot, an accuracy between 84 to 93% is achieved. A very limited dataset 

containing only 80 images is used for training and testing purposes. A lightweight ResNet (LW-ResNet) (Yu, Cheng, 

Li, Cai, & Bi, 2022) architecture based on ResNet-18 to detect and classify the six different types of apple leaf disease 

was proposed in this study. The dataset was acquired for Kaggle. The proposed architecture uses a multi-scale layer 

for feature extraction, the parameter memory is 92% less compared to the traditional ResNet-18 model, and provides 

low computational cost, low storage cost, and strong real-time performance. While comparing its efficiency in terms 

of precision, recall and F-1-measure with SqueezeNet and MobileNet, it outperforms the competitors with a score of 

97.80%, 97.92% and 97.85% respectively.  

 

Handheld Device and Smartphone-Assisted Plant Disease Diagnosis 

 

One way to adapt deep learning models to run on handheld devices and smartphones is by reducing the model’s 

complexity and size. This can be achieved through techniques such as model compression and pruning, which 

remove redundant and unnecessary parameters from the model. Another way is to use specialized deep learning 

architectures designed for mobile devices, such as MobileNet, which use depth-wise separable convolutions to 
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reduce computational complexity while maintaining high accuracy. Additionally, quantization of the model can 

also be done to run on specific hardware of mobile devices. Elhassouny et al. (2019) proposed an efficient smart 

mobile application model inspired by the MobileNet CNN model, which can recognize the ten most common 

types of tomato leaf disease using 7176 images of tomato leaves in the dataset. Andrianto et al. ( 2 0 2 0 )  propose 

a deep learning-based rice disease detection system that consists of a machine learning application on a cloud 

server and an application on a smartphone.  The system uses the VGG16 architecture and has a training 

accuracy of 100% and a test accuracy of 60%. The test accuracy can be improved by adding more data and 

increasing the dataset’s quality. This system aims to improve the control of rice plant disease and maximize 

yields. Valdoria et al. ( 2 0 1 9 )  emphasize the detection of common diseases on terrestrial plants in the Philippines 

using image processing and deep-learning neural networks. Android-based smartphones were used to capture 

images of the terrestrial plant to detect the plant’s disease; at the same time, a deep learning neural network 

algorithm was utilized to distinguish the disease of terrestrial plants.  

 

The results were trained using classification models that could identify the diseases at a  certain rate and 

accuracy, considering the number of images used. Diah et al. ( 2 0 2 1 )  use a deep learning model based on 

a convolutional neural network (CNN) architecture to detect and classify tomato plant diseases using information 

from plant leaves such as color, texture, and shape. The model achieved a 95.8% validation and training accuracy 

rate for the classification results. The proposed OplusVNet network effectively classifies citrus disease images, 

outperforming other networks on small and unbalanced datasets. Future work includes mobile application 

development and agricultural automation (Yang, Teng, Dong, Lin, Chen, & Wang, 2022).  

 

Key Findings from the Literature Review 

Deep learning has the potential to greatly impact plant disease detection and the future of agricultural management. 

Deep learning techniques, such as convolutional neural networks (CNNs), have achieved high accuracy in 

detecting plant diseases, often surpassing traditional image processing methods (Kaushik, Prakash, Ajay, & Veni, 

2020). Additionally, deep learning models can be trained to detect diseases using IoT-based systems using edge 

devices for farmers with rapid and reliable information to make decisions about treatment and management (Rumy, 

Hossain, Jahan, & Tanvin, 2021). One potential impact of deep learning in plant disease detection is the ability to 

improve crop yields and reduce crop losses. Early detection of plant diseases can enable farmers to take preventative 

measures, such as applying pesticides or isolating infected plants, to reduce the spread of disease and minimize 

damage (Ferentinos, 2018). This could increase crop yields and improve food security, particularly in regions 

where crop diseases are prevalent.  

 

Another potential impact of deep learning in plant disease detection is the ability to use resources more efficiently. 

Deep learning models can analyze large amounts of data, including images and sensor data, to detect plant 

diseases quickly and accurately (Pandian, Kumar, Geman, Hnatiuc, Arif, & Kanchanadevi, 2022). This can enable 

farmers to focus their efforts on specific areas of a field or specific plants rather than treating the entire field, 

reducing the resources required for disease management. Moreover, deep learning can improve the precision of 

plant disease detection and reduce the number of false positives and negatives caused by traditional methods 

(Saheb, Narayanan, & Rao,  2022) .  Using deep learning models in crop management can help farmers to 

make more informed decisions on disease management and reduce the number of chemical inputs used in 

agriculture. In summary, deep learning has the potential to greatly impact plant disease detection and the future of 

agricultural management by enabling farmers to detect diseases, improve crop yields, and make more efficient use of 

resources quickly and accurately. 
 

Methods and Materialsials 

This research study proposes a Deep Convolutional Neural Network (DCNN). The proposed system is 

elaborated with a flowchart depicted in Figure 1. 
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Figure 1 

Workflow Model for the Citrus Leaf Disease Detection 

 

 

Dataset Acquisition and Splitting 

 

Datasets are required at all steps, from training to algorithm evaluation  during the image analysis study. A 

total of 2489 images were collected from the citrus dataset (Ali, Lali, Nawaz, Sharif, & Saleem, 2017), the self-

collected dataset, and the Plat Village dataset (Hughes & Salathe, 2015). The images are divided into infected 

and healthy images grouped into seven categories: Bacterial spot, Black spot, Canker, Citrus Powdery Mildew, 

Greening, Melanose, and healthy images shown in Table 2.  

 

Table 2 

Different Categories of Plants 

 

Category Disease Image Count (Training) Image Count (Testing)  

Leaf Bacterial Spot 88 58  

 Black Spot 471 61  

 Canker 513 147  

 Citrus Powdery Mildew 35 14  

 Greening 684 121  

 Melanose 65 31  

 Healthy 128 76  

 Total 1984 505  

 Grand Total 2489   

     

This table provides information about the number of images of different categories of plant diseases and healthy 

plants used for training and testing using a machine learning model. Plants belonging to various categories are 

shown. 

 

The dataset is divided into three parts: (i) training data, (ii) test data, and (iii) validation data using the Python 

split folders library.  Intel CORE i7, a  7th-generation, 64-bit operating system with 8 GB RAM, is used for 



  
Multi-Disciplinary Publishing Institute Pakistan                                                                                                                 Vol. 01, Issue. 02 
 

         

Open Access Digital Management and Governance Review 

 
Mahmood, K., Kundi, G.M., & Mughal, Y.H. (2025), 1-21 

 

8 
 

 

experiments. The Keras package, TensorFlow, and Anaconda Environment are utilized to run and execute the 

proposed DCNN model.  

 

Train Data 

  

A DCNN model is developed using 75% of the training data. This data is used to train our model. The input and 

the anticipated outcomes are both included in the training data. 

 

Test Data 

  

25% of the initial dataset is used for evaluation, which makes up the testing data. After the model has finished 

training, the test data forecasts its behavior.  

 

Validation Data  

 

To minimize the underfitting and overfitting phenomena of the model (Singh, Rani, & Mahajan, 2018), which 

usually occur during the testing phase, when a machine behaves very well during the training phase, but its 

performance degrades during the testing phase with new data.  The final model is then tested on the test dataset 

to evaluate its generalization ability and estimate its performance on unseen data. It is important to note that the 

validation dataset represents the unseen data the model encounters in practice; otherwise, it may perform poorly 

when used on real-world data. 

 

Overview of the Proposed Approach  

 

The following modules make up the suggested technique: (i) pre-processing input image dataset, (ii) Data 

Augmentation, (iii) CNN layer-1, (iv) MaxPooling Layer-1, (v) CNN layer-2, (iv) MaxPooling Layer-2 (v) Dropout 

Layer, (vi) Flatten layer, and (vii) Classification Layer. 

 

Figure 2 

The DCNN Model  
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Figure 2 depicts the DCNN model module consisting of several layers stacked on each other. The input image is 

passed through a series of convolutional layers that apply filters to extract features from the image, max pooling 

layers to reduce spatial resolution and increase robustness, a flattened layer to convert the image into a one-

dimensional array, and a dropout layer to reduce overfitting. A fully connected layer generates the model output 

and is the probability of each class, with the highest probability representing the predicted class. The DCNN 

model extracts features from the input image and uses them to classify the image into one of the predefined classes. 

 

Pre-processing of the Input Image: 

 

The input image is pre-processed in this module using the Keras image Data Generator module (Salamon 

& Bello, 2017). Image scaling, normalization, and data normalization functions are applied in this stage 

to normalize and scale the image repository for further processing. 
  

Data Augmentation 

 

Data augmentation aims to help better image recognition and reduce overfitting problems (Taylor & 

Nitschke, 2018).  It helps with better data visualization by artificially expanding datasets using 

different options like Image Zoom, Rotation, Flipping, and Blur.  

 

CNN Layer-1  

 

The objective of this layer is to obtain a feature map of the input image. This objective is achieved using a 

convolution operation on the input image (Albawi, Mohammed, & Al-Zawi, 2017). 

 

MaxPooling of Layer-1 

 

The features obtained from CNN Layer-1 are reduced in size when transmitted to this layer; different pooling options 

can be chosen for feature selection. This layer reduces the noise and variations (Giusti, Cireşan, Masci, Gambardella, 

& Schmidhuber, 2013). 

 

CNN Layer-2 

 

This layer works similarly to Layer-1 of CNN, but it gets low-level features while Layer-1 gets high-level 

features. 

 

MaxPooling of Layer-2 

 

This layer works similarly to MaxPooling Layer-1, with the aim of dimensionality reduction. 

Dropout Layer 

 

To avoid overfitting the data in the testing phase dropout layer is used (Baldi & Sadowski, 2013).  In the 

proposed study, we have set the rate=0.2. 

 

Flatten Layer 

  

This layer converts the resultant two-dimensional arrays from pool feature maps into single continuous vectors. 
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Classification Layer 

 

The output obtained from the flattened layer is used to get one of the possible images for classification 

using the activation function. The leaf disease is inspected using the SoftMax Activation function (Liang, 

Wang, Lei, Liao, & Li, 2017). 
 

Experimental Results and Discussion 

Dataset Description 

 

We used sample images from the benchmark databases to experiment.  The image dataset has been collected from 

the Kaggle Citrus dataset[68], Plant Village dataset (Hughes & Salathe, 2015), and our amassed image library to 

analyze the proposed study. Citrus diseases, including Bacterial spot, Black spot, Canker, Citrus Powdery 

Mildew, Greening, Melanose, and healthy images, are detected and classified using these datasets shown in Fig. 3.

  

Preprocessing of the Input Image 

 

The system initiates by taking input images from the citrus leaf dataset. The input shape parameter is set to 

accept a three-dimensional matrix image. After input, the image is rescaled and normalized for further processing. 

 

Data Augmentation 
 

Deep learning models for classification tasks require large amounts of data for accurate prediction. On the other 

hand, the need for updated image collections for citrus illnesses and the small number of image repositories 

hinder the automatic detection of diseases that affect citrus leaves. To avoid this problem, a data augmentation 

operation on the training set was performed to increase the data size and avoid the problem of overfitting (Shorten 

& Khoshgoftaar, 2019). The overfitting problem arises when the model performs very well on the training data, but 

its performance deteriorates on the test data. Data augmentation parameters, such as Random Rotation, Random 

Zoom, Random Flip, Random Contrast, and Random Mirroring employing principal component analysis, are 

applied to the datasets. The input images are then resized to a standard 256 x 256 dimensions to facilitate 

implementation and reduce processing time. 
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Figure 3 

The Citrus Leaves (infected and healthy images).  

 
 

Figure 3 shows a dataset of citrus leaf images divided into infected and healthy images. The images are grouped 

into seven categories, each representing a different citrus leaf disease: bacterial spot, black spot, canker, citrus 

powdery mildew, greening, melanose, and healthy images. The dataset trains and tests a DCNN model for citrus 

plant disease detection. The model is trained to classify the images into one of the seven disease categories based 

on the features extracted from the images. 

 

Figure 4 

The figure shows the DCNN Architecture 

 
 

Figure 4 shows the DCNN Architecture. The images with the different diseases are fed as input. The DCNN 

architecture consists of Convolution, Pooling, and the SoftMax layer. The output layer presents the image with 

the highest probability.   
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CNN Layer-1 

 

The fundamental units of CNN are the convolutional layers. The convolution Layer-1 performs the function of feature 

extraction. Convolution is a mathematical operation that filters an input image 1 concerning its dimensions Win X Hin. 

Its hyperparameters filter dimensions K x K size, stride S, and padding P. A feature map is generated as an output of 

repeated applications of the same filter, which indicates the locations and strength of detected features of an input 

image. The output size can be estimated by the following equation (1). 

 

𝑀𝑥 =  
𝐼𝑥−𝐾𝑥

𝑆𝑥
               𝑀𝑦 =  

𝐼𝑦−𝐾𝑦

𝑆𝑦
  (1) 

 

Where in the above equation, (Mx, My) represents the matrix, (Ix, Iy) represents the input size, (Kx, Ky) represents the 

Kernel size, and (Sx, Sy) represents the Stride concerning row and column, respectively. 

 

MaxPooling Layer-1 

 

The pooling layer performs the down-sampling (sub-sampling) operation on the output generated by the convolution 

layer to reduce its dimensionality. Particularly, the max and average pooling are special types of pooling in which the 

maximum and, in the latter case, the average value is considered for the pooling operation. The following equation 

determines the output by applying the Max operation on the input feature matrix. 

 

𝑀(𝑟, 𝑐) = 𝑀𝑎𝑥(𝑀𝑥, 𝑀𝑦)                          (2) 

 

CNN Layer-2 

 

Layer 2 of CNN is responsible for extracting high-level features received from the previous MaxPooling layer. The 

second layer of CNN is comparable in function to the first convolution layer. Equation 1 is used to calculate the 

CNN layer 2. 

 

MaxPooling Layer-2 

 

The objective of this layer is to condense the matrix scale. This layer is comparable in function to the first pooling 

layer. MaxPooling layer-2 is obtained using equation 2. 

 

DropOut Layer 

 

Co-adoption is the phenomenon that occurs in fully connected layers due to the many neurons. Due to this co-adoption 

issue, multiple neurons extract similar hidden features from the input data because of identical neurons. It leads to 

wastage of machine resources and, more importantly, leads to overfitting in the test data due to duplicated extracted 

features (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). So, in the training phase, we randomly 

drop out some fraction of the layer’s neurons by zeroing out the values of neurons. In the proposed study, we have set 

the dropout rate to 0.2, meaning that we randomly drop out two neurons. 

 

Flatten Layer 

 

This layer receives the output from the MaxPooling layer-2 as input. This layer's responsibility is to transform the 

pooled feature matrix M output into a feature vector or column. The feature vector can be obtained from the feature 

matrix M by restructuring the function.  
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Classification Layer 

 

The probabilities of different categories for citrus leaf images are calculated through the dense layer comprising 

different neurons by using the SoftMax function. The following equation obtains the resultant output.  

  

𝑧 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑙
𝑖    (3) 

 

Whereas x represents the input vector, w is a weight vector, and b represents the bias. Z is the activation function that 

generates the maximum probability value as the classification output. 

 

Applying a Citrus Leaf Disease Classification Model:  

 

This section elaborates on the process of citrus leaf disease recognition and classification using the proposed model. 

The suggested study's workflow model to identify the seven different forms of leaf diseases is shown in Figure 2. 

Bacterial spot, Black spot, Canker, Citrus Powdery Mildew, Greening, Melanose, and healthy images were identified 

and classified using the said approach. 

 

Data Acquisition of the Input Image 

 

The first step is to collect the input images dataset. These images are converted into a pixel with a dimensions matrix 

(256,256,3), with height, width, and RGB color combination ratio, respectively. These images are rescaled and 

normalized for further processing.  

 

Data Augmentation 

 

The goal of data augmentation is to supplement existing data to improve model performance and overcome the 

overfitting problem. The image dataset size can be increased for better training by applying data augmentation 

hyperparameters.  

 

Convolutional Layer-1 

 

This layer is responsible for high-level feature extraction. The input images are transformed into feature maps using 

the filter and padding processes. The process is described in section 4.4.  

 

MaxPooling Layer-1 

 

The MaxPooling layer performs the down-sampling operation on the feature matrix obtained from the convolution 

layer. It results in dimensionality reduction of the feature matrix.  

 

Convolution Layer-2 

 

To extract the feature matrix, this layer operates identically to the first convolution layer.  It gets input from the 

previous MaxPooling layer-1. The pooling layer condenses the image feature matrix.  

MaxPooling Layer-2 

 

The second MaxPooling layer's goal is to decrease the dimension size to make features more easily discernible. 
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Dropout Layer 

 

The dropout layer drops the identical neuron with similar weights to reduce the burden in the training phase.  

 

Flatten Layer 

 

The flattened layer performs the job of converting the pooled feature matrix into a single-dimensional feature vector.  

 

Classification Layer 

 

The classification layer calculates the probabilities of the seven distinct citrus leaf diseases. The output probability 

ranges between 0 and 1. We obtain the following probabilities of each citrus leaf disease by applying the SoftMax 

function with the score: Bacterial spot (0.40), Black spot (0.3), Canker (0.51), Citrus Powdery (0.45), Mildew (0.60), 

Greening (0.27), Melanose (0.87), and healthy (0.29). Using the above probability computation, the Melanose gets 

the higher probability, i.e., 0.87, so the Melanose picture is the resultant output. 

 

Result and Discussion  

This part assesses and displays the results and conclusions attained via various experiments and empirical 

settings to validate our suggested study. The Citrus detection function is shown in Algorithm 1. Establishing 

Parameters for the CNN Model for Citrus Disease Recognition and Classification is shown in Table 3. 

 

Table 3 

Parameters used for DCNN 

Parameter Value 

Image Dimensions 256 x 256 

# of layers in CNN 2..4 

# of MaxPool Layers 2..3 

# of Filters 64,32,16 

Dimension of Filters 2,3 

Activation Functions SoftMax, ReLU 

# of epochs  10..50 

Batch size  64 

 

                                    

 Algorithm 1 CNN Workflow Model 

Input: train 

Output: test 

Data: Training/Testing set x 

Function CNN Workflow Model (train, test): 

Import Image Data Generator from tensorflow.keras.preprocessing.image 

Import ImageDataGenerator from tensorflow.keras.preprocessing.image 

Define data_augmentation as a sequence of RandomContrast and RandomZoom layers 

Define model as a Sequential model 

Add data_augmentation to t h e  model 

 Add a Conv2D layer with 64 filters, 3x3 kernel, relu activation, and input shape of (256,256,3) to model 

Add a MaxPool2D layer with 2x2 pool size to the model 

Add a Conv2D layer with 32 filters, 3x3 kernel, and relu activation to the model 

Add a MaxPool2D layer with 2x2 pool size to the model 

Add a Flatten layer to the model 
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Add a Dropout layer with rate 0.2 to the model 

Add a Dense layer with 7 units and softmax activation to the model 

  Compile model with loss of ’categorical_crossentropy’, optimizer of ’adam’, and metric of ’accuracy’ 

Define train_dataset as the flow of images from the directory Citrus_Dataset/Processed_output/train/’ with 

target size of (256,256), batch size of 64, and class mode of ’categorical’ 

Define validation_dataset as the flow of images from the directory Define’Citrus_Dataset/Processed_output/val/’ 

with target size of  

Define Fit the model with train_dataset, validation_data as 

Add validation_dataset, steps_per_epoch as 3, and 30 epochs 

CNNWorkflowModel 

 

To gauge the effectiveness of the suggested task, we used various ratios of training and testing samples. This study 

used a 75-25 split ratio for evaluation purposes. These variations in the train-test samples provide a way to check 

the accuracy of the model, because as the training sample grows, its efficiency also increases. The precision 

(Buckland & Gey, 1994), refers to the number of accurately detected positive occurrences and measures the 

accuracy of positive instances, and can be calculated using equation (1) whereas in memory the TP reflects the 

actual positive cases that are precisely identified, and FN indicates the false negatives or the number of positive 

cases that are incorrectly named as negatives. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃+𝑇𝑁

𝑇𝑃
    (4) 

 

The recall (Gillund & Shiffrin, 1984) represents the ratio of negative instances and refers to the number of negative 

instances that were wrongly marked as positive. The TN represents the quantities of cases or actual negatives that 

are negative and identified as true, and FP represents the quantities that were actual negatives, but were wrongly 

marked as positive. It is represented in equation (5). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑁+𝐹𝑃

𝑇𝑁
   (5) 

 

The accuracy (Swets, 1988), represents the joint distribution of precision and recall. The accuracy returns the 

overall performance of the model. It is represented in an equation. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝐹𝑃+𝑇𝑃+𝑇𝑁

𝑇𝑁+𝑇𝑃
  (6) 

 

We set different experiment settings for DCNN, with various epoch settings.  In the training phase for 30 

epochs, we achieved a 93.76% accuracy score, and for 50 epochs, we got a 95.80% accuracy score. and for 100 

epochs, we got 97.66% highest accuracy score. The proposed study achieves an accuracy of 97.66% score, with an 

increase of 12% accuracy score with comparison to (Liu, Xiang, Qin, Ma, Zhang, & Xiong, 2021) and an increase 

of 4.16% with comparison to (Elaraby, Hamdy, Alanazi, 2022), respectively. Results are shown in Fig. 4.  

 

Figure 5 

On the left: For cross cross-entropy loss graph, it can be seen that with the increasing number of epochs, the 

training/testing error decreases. On the Right: For the accuracy graph, it is clear that the accuracy of the DL model 

increases with more iterations. 
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. 

Table 4 

DCNN Score with different Settings.  

                                   

Epochs Recall Precision F-measure Accuracy 

DCNN (30) 91.74 90.14 92.15 93.76 % 

DCNN (50) 93.74 94.50 95.00 95.80 % 

DCNN (100) 95.76 95.99 96.56 97.66 % 

 

Table 5 

Comparative Analysis with other Studies. 

Baseline Study                 Technique Accuracy Score 

(Liu, Xiang, Qin, Ma, 

Zhang, & Xiong, 

2021)  

Image recognition of citrus diseases using 

CNN 

87.28% 

(Elaraby, Hamdy, 

Alanazi, 2022)   

Classification of citrus diseases using CNN + 

AlexNet 

93.5 % 

(Luaibi, Salman, & 

Miry, 2021)  

Detection of citrus leaf diseases using CNN 91.75 % 

Proposed Study Citrus leaves disease detection and classification 

using a DCNN approach with data augmentation 

97.66% 

                         

Threats to Validity 

  
The following shortcomings are observed for the suggested study: 

  

1. Dataset Size: Due to t h e  limited dataset size, a diverse dataset will further improve the accuracy 

of the system.  

2. Limited classes: The model may not generalize well to other classes if the number of classes is limited 

in the training dataset.  

3. Limited images: The model may not generalize well if the number of images per class is limited in the 

training dataset.  

4. Environmental conditions: the model performance may vary depending on the conditions under which 

the images are taken (e.g., lighting, temperature, humidity). 
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Conclusion 

Deep learning methods such as convolutional neural networks (CNNs) are highly effective in detecting plant 

diseases with high accuracy rates. The suggested DCNN model is capable of classifying diseases that affect 

citrus leaves. It distinguishes the healthy leaf images from the infected leaf images.  The proposed model 

performs data acquisition, pre-processing, and application of the DCNN model to the acquired dataset into multiple 

distinct classes. The DCNN module is composed of multiple convolutional and max pooling layers. While the 

second convolutional layer concentrates on high-level characteristics, the first convolutional layer collects low-

level features. Coupled with MaxPool layers to downsample the feature matrix generated by the convolution 

layer. The dropout layer randomly drops the identical weights of neurons to tackle the overfitting issue. Our 

proposed model classifies citrus leaf diseases into Bacterial spot, Black spot, Canker, Citrus Powdery Mildew, 

Greening, Melanose, and healthy images with an accuracy of 97.66%, outperforming the state-of-the-art deep 

learning models. The proposed model can be further extended to mobile applications (IoT), which facilitates 

farmers with prompt and timely messaging to adopt precautionary measures to take necessary actions to save the 

crops. Real-time image capturing (sensory data) can be used for image extraction.  To incorporate further hybrid 

combinations of deep learning approaches, like combining CNN with LSTM or Bi-LSTM. The proposed work 

can be extended further from leaf disease detection to other parts of plants, such as stems and flowers. 
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