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Abstract

Agriculture production is a crucial economic backbone for any
country and is vital in meeting human food needs. At the same time,
plant disease poses a significant threat to this sector, leading to
decreased yields and heavy losses. Automated systems for disease
detection and classification can aid in combating this issue and
promoting growth and development. In recent years, deep learning
approaches have demonstrated promising results in various artificial
intelligence tasks, specifically in the Smart Agriculture domain.
Smart Agriculture applications include Plant disease detection,
water and soil management, crop distribution, crop cultivation, fruit
counting, and yield prediction. This paper presents an integrated and
enhanced approach for detecting citrus leaf disease detection using
a deep convolutional neural network. The proposed model can
distinguish healthy citrus leaves from seven common diseases:
bacterial spot, black spot, canker, citrus powdery mildew, greening,
melanose, and health. The proposed model extracts the
complementary features by incorporating multiple hidden layers and
using data augmentation for improved image recognition and
classification. The proposed model is tested against other deep
learning models on the citrus and Plant Village dataset and
outperformed previous studies in various performance measurement
metrics. With a test accuracy of 97.66%, our model serves as a
reliable tool for citrus plant disease detection.
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Introduction

In Pakistan, sustainable agricultural expansion is essential for rural development and food security. It generates
22.7% of the GDP, employs about 37.4% of the labor force, manages the rural environment, and acts as an
environmental buffer to safeguard and improve the climate-resilient ecosystem and production (Naqvi, Wang,
Malik, Umar, Hasnain, Sohail, ef a/., 2022). The agriculture industry had a tremendous increase of 4.40 percent
between 2021 and 2022, exceeding the goal of 3.5% and the growth of 3.48% the previous year. Second, only
to bananas in terms of global fruit output, citrus is grown on more than 200,400 hectares and produces 158
million tons of fruit annually. China produces the most citrus fruit on the planet, with 35.2% of all fruit
production, or 2.4 million tons, produced in the citrus industry in 2014-2015. Mandarins (Kinnow), oranges,
grapefruit, lemons, and limes are citrus fruits, and mandarins (Kinnow) are particularly significant to Pakistan
(Siddique & Garnevska, 2018). There are more than 140 countries in the world where citrus is grown. Brazil, China,
Mexico, the United States, Spain, and India are the world's top citrus-producing nations. Pakistan is one of the top
ten countries in the world for citrus production (Source: FAOSTAT). With a 95% market share, Kinnow (Citrus
reticulate) is Pakistan’s most common citrus species. Punjab portions 94% and 96% in the area and production of
citrus, respectively (Catara & Polizzi, 1999). Citrus has a high nutritional value and is a rich source of vitamins C
and E, sugar, organic acids, amino acids, and minerals, including calcium and magnesium. The average yield in
Pakistan is 2.36million tons, spread across 1,000 hectares, with an annual export of 282,000 tons, selling for 7,313
million rupees (Dandurand &. Menge, 1992). However, diseases are an important factor that restricts citrus
growth and development. The disease affects different parts of the citrus plants, including the stem,
leaves, fruits, and branches. The traditional methods for disease detection are manual and rely on human
expertise, observation, and judgment.

There are problems of inaccurate identification and low efficiency, researcher user image processing, computer
vision, and different machine learning and deep learning techniques to detect plant diseases. Citrus fruit plants
are very vulnerable to various infections and bacterial diseases, including Bacterial Spot, Black Spot, Canker,
Citrus Powdery Mildew, Greening, and Melanose; they represent a persistent threat to citrus farming and have a
significant economic impact on all citrus-growing regions worldwide (Mendonga, Zambolim, & Badel, 2017).
Citrus trees can get the highly contagious canker, typically found on the leaves or fruit. In recent years, deep
learning techniques have emerged as a powerful tool for disease detection in various fields, including agriculture.
Different Machine learning models like SVM (Kour & Arora, 2019), Random forest (Wo¢jtowicz, Piekarczyk,
Czernecki, & Ratajkiewicz, 2021), Ensemble, and methods (Hu, Yin, Wan, Zhang, & Fang, 2020) use image
processing to obtain disease feat. However, these machine learning models use manual and hand-crafted features,
which are highly subjective. In contrast, on the other hand, deep learning models, specifically convolutional neural
networks (CNNs), have shown promising results in detecting and classifying various citrus plant diseases (Liaqat,
Hassan, Shoaib, Khurshid, & Shamseldin, 2022; Sultana, Sufian, & Dutta, 2018). This study proposes a deep
learning-based approach for detecting citrus plant leaf disease using CNNs. The proposed model distinguishes
healthy citrus leaves from common diseases, including bacterial spots, blackspots, canker, citrus powdery
mildew, greening, melanose, and health. The model incorporates multiple hidden layers and data augmentation
techniques to extract relevant features and improve image recognition and classification accuracy. The proposed
model is tested on a citrus leaves dataset and evaluated against other deep-learning models. The research study results
are expected to provide a reliable and efficient tool for citrus plant disease detection at early stages and contribute
to the sustainable expansion of the agriculture industry in Pakistan.

Literature Review

Plant diseases can significantly impact food safety and agricultural product output. Many automated systems
developed for plant disease detection have been based on digital images, allowing for the swift implementation
of algorithms. The challenges associated with the autonomous identification of plant illness have been addressed
using traditional machine learning techniques such as Support Vector Machines (SVMs), Multilayer Perceptron
Neural Networks, and Decision Trees. Varshney et al. (2022) propose a novel DL method for leaf plant disease
detection utilizing a transfer learning methodology, where a Convolutional Neural Network (CNN) is
utilized as a feature extractor, and SVM is employed for classification. The proposed model is evaluated using a
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benchmark dataset called PlantVillage. Results indicate that the proposed model outperforms previous work,
achieving an accuracy of 88.77% on a training dataset. Bharateet es a/. (2017) provide an overview of various
image-processing techniques used for plant disease detection. These methods include research on disease
detection in various plants such as apples, grapes, peppers, pomegranates, and tomatoes. Researchers have
developed various methods for recognizing and classifying different types of fruit diseases, such as the YCR
color model, the HSV color model (Dhanesha & Shrinivasa, 2019), and VGG16. Dhanesha et al. (2018) used the
YCR color model to segment the Arecanut bunches, using volumetric overlap error and dice similarity
coefficient to evaluate the degree of similarity between the input image and the ground truth. Ghosal and Sarkar
(2020) developed a VGG16 model (Qassim, Verma, & Feinzimer, 2018) that incorporates transfer learning to
diagnose diseases affecting rice plants. The researchers trained this classification system with the help of
four different image classes, and now VGGI16 is accurate up to 92.4% of the time. Kumar et al. (2020)
developed a system that can recognize illnesses based on the appearance of the leaves of coffee plants, using radial
basis function neural networks, fuzzy logic-based expert systems, transfer learning techniques, and CNN with
data augmentation. Coulibaly ef al. (2019) use a GG16 model trained through transfer learning to detect diseases
in millet crops; 124 images of leaves are separated into two categories: those with mild infections and those that
appeared healthy. The level of precision achieved by the VGG16 model is 95%.

Deep Learning Models for Plant Disease Detection

Deep learning models have been effectively used to detect plant diseases by recognizing patterns and features in
images of both healthy and diseased plants through training on large datasets. Convolutional Neural Networks
(CNNs) are a specific type of deep learning model that has shown success in classifying images of plant leaves,
and RetinaNet (Wang, Wang, Zhang, Dong, & Wei, 2019) is another example of a deep learning model that can
detect multiple diseases in a single image, which can help farmers to prevent disease spread and increase crop
yield.

Pavan et al. (2021) present a comprehensive review of convolutional neural networks (CNNs) for plant disease
detection from images. The authors discuss various CNN architectures, such as AlexNet, VGG, and ResNet, and
their performance on different plant species and diseases. They also discuss the challenges and limitations of using
CNNs for plant disease detection and the current state of the art. Saleem er al. (2020) employed DL meta-
architectures and TensorFlow object detection framework to tackle the intricate tasks of identifying the location
and categorizing diseases in plant leaves. This led to high accuracy in recognizing different types of damaged
and healthy leaves, achieving a mean average precision of 73.07%. The methodology can be utilized in other areas
of agriculture and has the potential for future utilization in the real-time detection of plant diseases in controlled and
non-controlled environments. Tan ef al. (2020) introduce EfficientDet, a family of convolutional neural network
(CNN) models designed to be accurate and efficient for object detection tasks. The authors present results of using
EfficientDet models for plant disease detection, showing that they achieve comparable or higher accuracy than
existing methods while being more scalable and efficient.

Image Datasets for Plant Disease Detection

Image datasets for plant disease detection typically consist of many images of both healthy and diseased plants. They
can include a wide variety of plant species and disease types. These datasets train deep-learning models for plant
disease detection and are critical for developing accurate and reliable algorithms. They are also used to evaluate
and compare the performance of different models on a common benchmark. Table 1 lists various datasets that
are used for plant disease detection. The plant species and disease categories also vary among the datasets. Some
datasets, such as PlantVillage and Embrapa Dataset, have specific information about the number of plant species
and disease categories included. Other datasets, such as IPM and Bing, do not provide this information.
Additionally, the backgrounds of the images in the datasets vary, with some taken in lab conditions with fixed
backgrounds, while others are taken in real-field conditions.
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Table 1
Plant Diseases Datasets

Dataset Name Institution Number of Plant Disease Background
Images Species Categories

PlantVillage Penn State University 54,305 14 38 Lab conditions with a
(Hughes & Salathe, fixed background
2015)
IPM[24] N/A 119 N/A N/A Fixed and background

conditions
PlantVillage N/A 87,848 25 58 Infield and laboratory
(extended) conditions
(Ferentinos, 2018)
Embrapa Dataset Embrapa Agriculture 46,513 18 93 In-field
(Barbedo, Institute
Koenigkan,
Halfeld-Vieira, et
al., 2018)
Strawberry N/A 3531 N/A 4 N/A

Dataset (Nie, L.
Wang, Ding, &M.

Xu, 2019)

Rice dataset Bangladesh Rice Research 1426 N/A N/A Real-field conditions
(Rahman, Arko, Institute

Ali, 2020)

Apple Dataset N/A 3651 N/A 4 N/A

(Thapa, Zhang,
Snavely, 2020)

Maize Dataset  Fujian Institute of 481 1 4 In-field

(Chen, Chen, Subtropical Botany

Zhang, 2020)

Rice Dataset Fuyjian Institute of 560 N/A 5 Laboratory and in-
Subtropical Botany field

PlantDoc (Wang, 2598 N/A 17 Field

Du, Wu, 2021)

Turkey- Agricultural Faculty of 4447 N/A 15 N/A

PlantDataset Bingol and Inonu

(Kumar, Universities

Belhumeur,

Biswas, 2012)

Other datasets on plant diseases are also available in the literature, not limited to (Falaschetti, Manoni, Di
Leo, Pau, Tomaselli, & Turchetti, 2022; Li & Yang, 2020).

Transfer Learning for Plant Disease Detection

Transfer learning is a technique used in deep learning to utilize pre-trained models on related tasks to improve
performance and reduce training time for a new task. It is especially useful when data is limited. It allows for better
generalization and helps avoid overfitting by fine-tuning the pre-trained models on large datasets for the new
task (Tan, Sun, Kong, Zhang, Yang, & Liu, 2018). Sagar et al. (2021) address the problem of multi-class
classification and show how neural networks can be used for plant disease recognition in the context of image
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classification. The study compares the performance of transfer learning approaches for plant disease detection,
including fine-tuning, feature extraction, and training on the publicly available Plant Village dataset, which
has 38 classes of diseases. Five different architectures are compared, including VGG16, ResNet50,
InceptionV3, InceptionResNet, and DenseNet169 as the backbones for the network; ResNet50 outperforms other
networks on the test set. Various metrics such as accuracy, precision, recall, F1 score, and class-wise confusion
metrics are used for evaluation. The model achieved the best results using ResNet50 with an accuracy of 0.982,
precision of 0.94, recall of 0,.94, and F1 score of 0.94.

Other studies that use transfer learning for plant disease detection can be found at Udawant and Srinath (2022),
Sharma, Nath, Sharma, Kumar, and Chaudhary (2022) Vallabhajosyula, Sistla, and Kolli (2022). The study proposed
a deep neural network model for automatically detecting citrus fruit and leaves diseases. The model achieved high
accuracy compared to baseline machine learning models and outperformed a four-convolutional-layer CNN model.
Future work involves exploring different datasets, using larger datasets, and investigating other deep learning
architectures and techniques (Khattak, Asghar, Batool, Asghar, Ullah, Al-Rakhami, et al., 2021). The study
successfully generated high-quality citrus disease and nutritional deficiency images using FastGAN2 and achieved
high accuracy in classification. The method shows potential for aiding fruit farmers in disease identification. Further
development includes extending the approach to other plant diseases and creating a user-friendly application or
software (Dai, Guo, Li, Song, Lyu, Sun ef a/, 2023). The study used CNN models to conduct a hyperspectral imaging
analysis of citrus fruit peels. The results demonstrated that training the CNN model with PCA-selected bands yielded
higher classification accuracy than randomly selected bands. Moreover, using images with multiple fruit instances
resulted in slightly better classification performance than using single fruit instances. The findings contribute to
developing efficient and accurate citrus peel condition detection methods. Future work involves deploying the trained
CNN model in real-time systems, exploring generalizability, optimizing model parameters, and expanding the research
to other agricultural applications (Yadav, Burks, Frederick, Qin, Kim, & Ritenour, 2022).

The study proposes the MF-RANet network for citrus disease recognition. AMSR preprocessing improves accuracy.
The ELU activation function is effective. MF-RANet outperforms other networks. Limitations and future work were
identified (Yang, Liao, Zhao, Zhou, He, & Li, 2022). The authors Atila, Ugar, Akyol, and Ugar (2021) in this research
study proposed an EfficientNet deep learning model for plant disease detection. This research study uses the
PlantVillage dataset to investigate various diseases in plants using different deep learning models. All the models were
trained on original and augmented datasets comprising 55,448 and 61,486 images. The results obtained from the
EfficientNet B4 on the augmented dataset achieve an accuracy of 99.91% and 99.07% accuracy score on the original
dataset with compared to other transfer learning and deep learning models. The reason behind the high accuracy score
is due to 90% training data, whereas only 7% data is used for testing and 3% for validation purposes (Gayathri, Wise,
Shamini, & Muthukumaran, 2020). Tea leaf disease was addressed in this paper using convolutional neural networks.
Four diseases were identified and classified in this research study by applying a CNN with data augmentation and
annotation. The authors achieve an accuracy of 94% for the red scab disease, and for the remaining three diseases, tea
leaf blight, blight disease, and tea red leaf spot, an accuracy between 84 to 93% is achieved. A very limited dataset
containing only 80 images is used for training and testing purposes. A lightweight ResNet (LW-ResNet) (Yu, Cheng,
Li, Cai, & Bi, 2022) architecture based on ResNet-18 to detect and classify the six different types of apple leaf disease
was proposed in this study. The dataset was acquired for Kaggle. The proposed architecture uses a multi-scale layer
for feature extraction, the parameter memory is 92% less compared to the traditional ResNet-18 model, and provides
low computational cost, low storage cost, and strong real-time performance. While comparing its efficiency in terms
of precision, recall and F-1-measure with SqueezeNet and MobileNet, it outperforms the competitors with a score of
97.80%, 97.92% and 97.85% respectively.

Handheld Device and Smartphone-Assisted Plant Disease Diagnosis

One way to adapt deep learning models to run on handheld devices and smartphones is by reducing the model’s
complexity and size. This can be achieved through techniques such as model compression and pruning, which
remove redundant and unnecessary parameters from the model. Another way is to use specialized deep learning
architectures designed for mobile devices, such as MobileNet, which use depth-wise separable convolutions to
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reduce computational complexity while maintaining high accuracy. Additionally, quantization of the model can
also be done to run on specific hardware of mobile devices. Elhassouny ez al. (2019) proposed an efficient smart
mobile application model inspired by the MobileNet CNN model, which can recognize the ten most common
types of tomato leaf disease using 7176 images of tomato leaves in the dataset. Andrianto et a/. (2020) propose
a deep learning-based rice disease detection system that consists of a machine learning application on a cloud
server and an application on a smartphone. The system uses the VGG16 architecture and has a training
accuracy of 100% and a test accuracy of 60%. The test accuracy can be improved by adding more data and
increasing the dataset’s quality. This system aims to improve the control of rice plant disease and maximize
yields. Valdoria e al. (2019) emphasize the detection of common diseases on terrestrial plants in the Philippines
using image processing and deep-learning neural networks. Android-based smartphones were used to capture
images of the terrestrial plant to detect the plant’s disease; at the same time, a deep learning neural network
algorithm was utilized to distinguish the disease of terrestrial plants.

The results were trained using classification models that could identify the diseases at a certain rate and
accuracy, considering the number of images used. Diah er a/. (202 1) use a deep learning model based on
a convolutional neural network (CNN) architecture to detect and classify tomato plant diseases using information
from plant leaves such as color, texture, and shape. The model achieved a 95.8% validation and training accuracy
rate for the classification results. The proposed OplusVNet network effectively classifies citrus disease images,
outperforming other networks on small and unbalanced datasets. Future work includes mobile application
development and agricultural automation (Yang, Teng, Dong, Lin, Chen, & Wang, 2022).

Key Findings from the Literature Review

Deep learning has the potential to greatly impact plant disease detection and the future of agricultural management.
Deep learning techniques, such as convolutional neural networks (CNNs), have achieved high accuracy in
detecting plant diseases, often surpassing traditional image processing methods (Kaushik, Prakash, Ajay, & Veni,
2020). Additionally, deep learning models can be trained to detect diseases using loT-based systems using edge
devices for farmers with rapid and reliable information to make decisions about treatment and management (Rumy,
Hossain, Jahan, & Tanvin, 2021). One potential impact of deep learning in plant disease detection is the ability to
improve crop yields and reduce crop losses. Early detection of plant diseases can enable farmers to take preventative
measures, such as applying pesticides or isolating infected plants, to reduce the spread of disease and minimize
damage (Ferentinos, 2018). This could increase crop yields and improve food security, particularly in regions
where crop diseases are prevalent.

Another potential impact of deep learning in plant disease detection is the ability to use resources more efficiently.
Deep learning models can analyze large amounts of data, including images and sensor data, to detect plant
diseases quickly and accurately (Pandian, Kumar, Geman, Hnatiuc, Arif, & Kanchanadevi, 2022). This can enable
farmers to focus their efforts on specific areas of a field or specific plants rather than treating the entire field,
reducing the resources required for disease management. Moreover, deep learning can improve the precision of
plant disease detection and reduce the number of false positives and negatives caused by traditional methods
(Saheb, Narayanan, & Rao, 2022). Using deep learning models in crop management can help farmers to
make more informed decisions on disease management and reduce the number of chemical inputs used in
agriculture. In summary, deep learning has the potential to greatly impact plant disease detection and the future of
agricultural management by enabling farmers to detect diseases, improve crop yields, and make more efficient use of
resources quickly and accurately.

Methods and Materialsials

This research study proposes a Deep Convolutional Neural Network (DCNN). The proposed system is
elaborated with a flowchart depicted in Figure 1.
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Figure 1
Workflow Model for the Citrus Leaf Disease Detection
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Dataset Acquisition and Splitting

Datasets are required at all steps, from training to algorithm evaluation during the image analysis study. A
total of 2489 images were collected from the citrus dataset (Ali, Lali, Nawaz, Sharif, & Saleem, 2017), the self-
collected dataset, and the Plat Village dataset (Hughes & Salathe, 2015). The images are divided into infected
and healthy images grouped into seven categories: Bacterial spot, Black spot, Canker, Citrus Powdery Mildew,
Greening, Melanose, and healthy images shown in Table 2.

Table 2
Different Categories of Plants

Category Disease Image Count (Training)  Image Count (Testing)
Leaf Bacterial Spot 88 58

Black Spot 471 61

Canker 513 147

Citrus Powdery Mildew 35 14

Greening 684 121

Melanose 65 31

Healthy 128 76

Total 1984 505

Grand Total 2489

This table provides information about the number of images of different categories of plant diseases and healthy
plants used for training and testing using a machine learningmodel. Plants belonging to various categories are
shown.

The dataset is divided into three parts: (i) training data, (ii) test data, and (iii) validation data using the Python
split folders library. Intel CORE i7, a 7th-generation, 64-bit operating system with 8 GB RAM, is used for
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experiments. The Keras package, TensorFlow, and Anaconda Environment are utilized to run and execute the
proposed DCNN model.

Train Data

A DCNN model is developed using 75% of the training data. This data is used to train our model. The input and
the anticipated outcomes are both included in the training data.

Test Data

25% of the initial dataset is used for evaluation, which makes up the testing data. After the model has finished
training, the test data forecasts its behavior.

Validation Data

To minimize the underfitting and overfitting phenomena of the model (Singh, Rani, & Mahajan, 2018), which
usually occur during the testing phase, when a machine behaves very well during the training phase, but its
performance degrades during the testing phase with new data. The final model is then tested on the test dataset
to evaluate its generalization ability and estimate its performance on unseen data. It is important to note that the
validation dataset represents the unseen data the model encounters in practice; otherwise, it may perform poorly
when used on real-world data.

Overview of the Proposed Approach
The following modules make up the suggested technique: (i) pre-processing input image dataset, (i) Data

Augmentation, (iii) CNN layer-1, (iv) MaxPooling Layer-1, (v) CNN layer-2, (iv) MaxPooling Layer-2 (v) Dropout
Layer, (vi) Flatten layer, and (vii) Classification Layer.

Figure 2
The DCNN Model
Input Bacterial
Spot
— R N
Ao f Citrus Disease }
%-» Classification )_
\‘_\\- /A_/_
0.51 Canker P
Softmax
Activation | = [ROS o Classify as
owaely Melanose
; Mildew
Function
| 27 | | melanose
m Greening
0.29 Healthy
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Figure 2 depicts the DCNN model module consisting of several layers stacked on each other. The input image is
passed through a series of convolutional layers that apply filters to extractfeatures from the image, max pooling
layers to reduce spatial resolution and increase robustness, a flattened layer to convert the image into a one-
dimensional array, and a dropout layer to reduce overfitting. A fully connected layer generates the model output
and is the probability ofeach class, with the highest probability representing the predicted class. The DCNN
model extractsfeatures from the input image and uses them to classify the image into one of the predefined classes.

Pre-processing of the Input Image:

The input image is pre-processed in this module using the Keras image Data Generator module (Salamon
& Bello, 2017). Image scaling, normalization, and data normalization functions are applied in this stage
to normalize and scale the image repository for further processing.

Data Augmentation

Data augmentation aims to help better image recognition and reduce overfitting problems (Taylor &
Nitschke, 2018). It helps with better data visualization by artificially expanding datasets using
different options like Image Zoom, Rotation, Flipping, and Blur.

CNN Layer-1

The objective of this layer is to obtain a feature map of the input image. This objective is achieved using a
convolution operation on the input image (Albawi, Mohammed, & Al-Zawi, 2017).

MaxPooling of Layer-1

The features obtained from CNN Layer-1 are reduced in size when transmitted to this layer; different pooling options
can be chosen for feature selection. This layer reduces the noise and variations (Giusti, Ciresan, Masci, Gambardella,
& Schmidhuber, 2013).

CNN Layer-2

This layer works similarly to Layer-1 of CNN, but it gets low-level features while Layer-1 gets high-level
features.

MaxPooling of Layer-2

This layer works similarly to MaxPooling Layer-1, with the aim of dimensionality reduction.

Dropout Layer

To avoid overfitting the data in the testing phase dropout layer is used (Baldi & Sadowski, 2013). In the
proposed study, we have set the rate=0.2.

Flatten Layer

This layer converts the resultant two-dimensional arrays from pool feature maps into single continuous vectors.
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Classification Layer

The output obtained from the flattened layer is used to get one of the possible images for classification
using the activation function. The leaf disease is inspected using the SoftMax Activation function (Liang,
Wang, Lei, Liao, & Li, 2017).

Experimental Results and Discussion

Dataset Description

We used sample images from the benchmark databases to experiment. The image dataset has been collected from
the Kaggle Citrus dataset[68], Plant Village dataset (Hughes & Salathe, 2015), and our amassed image library to
analyze the proposed study. Citrus diseases, including Bacterial spot, Black spot, Canker, Citrus Powdery
Mildew, Greening, Melanose, and healthy images, are detected and classified using these datasets shown in Fig. 3.

Preprocessing of the Input Image

The system initiates by taking input images from the citrus leaf dataset. The input shape parameter is set to
accept a three-dimensional matrix image. After input, the image is rescaled and normalized for further processing.

Data Augmentation

Deep learning models for classification tasks require large amounts of data for accurate prediction. On the other
hand, the need for updated image collections for citrus illnesses and the small number of image repositories
hinder the automatic detection of diseases that affect citrus leaves. To avoid this problem, a data augmentation
operation on the training set was performed to increase the data size and avoid the problem of overfitting (Shorten
& Khoshgoftaar, 2019). The overfitting problem arises when the model performs very well on the training data, but
its performance deteriorates on the test data. Data augmentation parameters, such as Random Rotation, Random
Zoom, Random Flip, Random Contrast, and Random Mirroring employing principal component analysis, are
applied to the datasets. The input images are then resized to a standard 256 x 256 dimensions to facilitate
implementation and reduce processing time.
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Figure 3
The Citrus Leaves (infected and healthy images).
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Figure 3 shows a dataset of citrus leaf images divided into infected and healthy images. The images are grouped
into seven categories, each representing a different citrus leaf disease: bacterial spot, black spot, canker, citrus
powdery mildew, greening, melanose, and healthy images. The dataset trains and tests a DCNN model for citrus

plant disease detection. The model is trained to classify the images into one of the seven disease categories based
on the features extracted from the images.

Figure 4
The figure shows the DCNN Architecture
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Figure 4 shows the DCNN Architecture. The images with the different diseases are fed as input. The DCNN

architecture consists of Convolution, Pooling, and the SoftMax layer. The output layer presents the image with
the highest probability.
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CNN Layer-1

The fundamental units of CNN are the convolutional layers. The convolution Layer-1 performs the function of feature
extraction. Convolution is a mathematical operation that filters an input image 1 concerning its dimensions Wi, X Hiy.
Its hyperparameters filter dimensions K x K size, stride S, and padding P. A feature map is generated as an output of
repeated applications of the same filter, which indicates the locations and strength of detected features of an input
image. The output size can be estimated by the following equation (1).

Ix—Kx w

Mx = —— My == (1)

Where in the above equation, (Mx, My) represents the matrix, (Ix, Iy) represents the input size, (Kx, Ky) represents the
Kernel size, and (Sx, Sy) represents the Stride concerning row and column, respectively.

MaxPooling Layer-1

The pooling layer performs the down-sampling (sub-sampling) operation on the output generated by the convolution
layer to reduce its dimensionality. Particularly, the max and average pooling are special types of pooling in which the
maximum and, in the latter case, the average value is considered for the pooling operation. The following equation
determines the output by applying the Max operation on the input feature matrix.

M(r,c) = Max(Mx, My) 2)
CNN Layer-2

Layer 2 of CNN is responsible for extracting high-level features received from the previous MaxPooling layer. The
second layer of CNN is comparable in function to the first convolution layer. Equation 1 is used to calculate the
CNN layer 2.

MaxPooling Layer-2

The objective of this layer is to condense the matrix scale. This layer is comparable in function to the first pooling
layer. MaxPooling layer-2 is obtained using equation 2.

DropOut Layer

Co-adoption is the phenomenon that occurs in fully connected layers due to the many neurons. Due to this co-adoption
issue, multiple neurons extract similar hidden features from the input data because of identical neurons. It leads to
wastage of machine resources and, more importantly, leads to overfitting in the test data due to duplicated extracted
features (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). So, in the training phase, we randomly
drop out some fraction of the layer’s neurons by zeroing out the values of neurons. In the proposed study, we have set
the dropout rate to 0.2, meaning that we randomly drop out two neurons.

Flatten Layer
This layer receives the output from the MaxPooling layer-2 as input. This layer's responsibility is to transform the

pooled feature matrix M output into a feature vector or column. The feature vector can be obtained from the feature
matrix M by restructuring the function.
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Classification Layer

The probabilities of different categories for citrus leaf images are calculated through the dense layer comprising
different neurons by using the SoftMax function. The following equation obtains the resultant output.

z=Y'wixi +b 3)

Whereas x represents the input vector, w is a weight vector, and b represents the bias. Z is the activation function that
generates the maximum probability value as the classification output.

Applying a Citrus Leaf Disease Classification Model:

This section elaborates on the process of citrus leaf disease recognition and classification using the proposed model.
The suggested study's workflow model to identify the seven different forms of leaf diseases is shown in Figure 2.
Bacterial spot, Black spot, Canker, Citrus Powdery Mildew, Greening, Melanose, and healthy images were identified
and classified using the said approach.

Data Acquisition of the Input Image

The first step is to collect the input images dataset. These images are converted into a pixel with a dimensions matrix
(256,256,3), with height, width, and RGB color combination ratio, respectively. These images are rescaled and
normalized for further processing.

Data Augmentation

The goal of data augmentation is to supplement existing data to improve model performance and overcome the
overfitting problem. The image dataset size can be increased for better training by applying data augmentation
hyperparameters.

Convolutional Layer-1

This layer is responsible for high-level feature extraction. The input images are transformed into feature maps using
the filter and padding processes. The process is described in section 4.4.

MaxPooling Layer-1

The MaxPooling layer performs the down-sampling operation on the feature matrix obtained from the convolution
layer. It results in dimensionality reduction of the feature matrix.

Convolution Layer-2

To extract the feature matrix, this layer operates identically to the first convolution layer. It gets input from the
previous MaxPooling layer-1. The pooling layer condenses the image feature matrix.
MaxPooling Layer-2

The second MaxPooling layer's goal is to decrease the dimension size to make features more easily discernible.

Open Access Digital Management and Governance Review

OADM&EGR

OPEN ACCESS DIGALMAANABINENT & GOV

Mahmood, K., Kundi, G.M., & Mughal, Y.H. (2025), 1-21

13



Multi-Disciplinary Publishing Institute Pakistan Vol. 01, Issue. 02
|

Dropout Layer

The dropout layer drops the identical neuron with similar weights to reduce the burden in the training phase.

Flatten Layer

The flattened layer performs the job of converting the pooled feature matrix into a single-dimensional feature vector.
Classification Layer

The classification layer calculates the probabilities of the seven distinct citrus leaf diseases. The output probability
ranges between 0 and 1. We obtain the following probabilities of each citrus leaf disease by applying the SoftMax
function with the score: Bacterial spot (0.40), Black spot (0.3), Canker (0.51), Citrus Powdery (0.45), Mildew (0.60),
Greening (0.27), Melanose (0.87), and healthy (0.29). Using the above probability computation, the Melanose gets
the higher probability, i.e., 0.87, so the Melanose picture is the resultant output.

Result and Discussion

This part assesses and displays the results and conclusions attained via various experiments and empirical
settings to validate our suggested study. The Citrus detection function is shown in Algorithm 1. Establishing
Parameters for the CNN Model for Citrus Disease Recognition and Classification is shown in Table 3.

Table 3

Parameters used for DCNN
Parameter Value
Image Dimensions 256 x 256
# of layers in CNN 2.4
# of MaxPool Layers 2.3
# of Filters 64,32,16
Dimension of Filters 2,3
Activation Functions SoftMax, ReLU
# of epochs 10..50
Batch size 64

Algorithm 1 CNN Workflow Model

Input: train

Output: test

Data: Training/Testing set x

Function CNN Workflow Model (train, test):

Import Image Data Generator from tensorflow.keras.preprocessing.image

Import ImageDataGenerator from tensorflow.keras.preprocessing.image

Define data_augmentation as a sequence of RandomContrast and RandomZoom layers
Define model as a Sequential model

Add data_augmentation to the model

Add a Conv2D layer with 64 filters, 3x3 kernel, relu activation, and input shape 0f(256,256,3) to model
Add a MaxPool2D layer with 2x2 pool size to the model

Add a Conv2D layer with 32 filters, 3x3 kernel, and relu activation to the model
Add a MaxPool2D layer with 2x2 pool size to the model

Add a Flatten layer to the model
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Add a Dropout layer with rate 0.2 to the model

Add a Dense layer with 7 units and softmax activation to the model

Compile model with loss of ’categorical crossentropy’, optimizer of ’adam’, and metricof ’accuracy’

Define train_dataset as the flow of images from the directory Citrus_Dataset/Processed output/train/’ with
target size of (256,256), batchsize of 64, and class mode of ’categorical’

Define validation dataset as the flow of images from the directory Define’Citrus Dataset/Processed output/val/’
with target size of

Define Fit the model with train_dataset, validation_data as

Add validation_dataset, steps_per _epoch as 3, and 30 epochs

CNNWorkflowModel

To gauge the effectiveness of the suggested task, we used various ratios of training and testing samples. This study
used a 75-25 split ratio for evaluation purposes. These variations in the train-test samples provide a way to check
the accuracy of the model, because as the training sample grows, its efficiency also increases. The precision
(Buckland & Gey, 1994), refers to the number of accurately detected positive occurrences and measures the
accuracy ofpositive instances, and can be calculated using equation (1) whereas in memory the TP reflects the
actual positive cases that are precisely identified, and FN indicates the false negatives or the number of positive
cases that are incorrectly named as negatives.

P TP+TN
Precision = T+—P 4)

The recall (Gillund & Shiffrin, 1984) represents the ratio of negative instances and refers to the number of negative
instances that were wrongly marked as positive. The TN represents the quantities ofcases or actual negatives that
are negative and identified as true, and FP represents the quantities that were actual negatives, but were wrongly
marked as positive. It is represented in equation (5).

TN+FP

Recall =

)

The accuracy (Swets, 1988), represents the joint distribution of precision and recall. The accuracyreturns the
overall performance of the model. It is represented in an equation.

TN+FP+TP+TN

Accuracy = TNTTP

(6)

We set different experiment settings for DCNN, with various epoch settings. In the training phase for 30
epochs, we achieved a 93.76% accuracy score, and for 50 epochs, we got a 95.80% accuracy score. and for 100
epochs, we got 97.66% highest accuracy score. The proposed study achieves an accuracy of 97.66% score, with an
increase of 12% accuracy score with comparison to (Liu, Xiang, Qin, Ma, Zhang, & Xiong, 2021) and an increase
of 4.16% with comparison to (Elaraby, Hamdy, Alanazi, 2022), respectively. Results are shown in Fig. 4.

Figure 5

On the left: For cross cross-entropy loss graph, it can be seen that with the increasing number of epochs, the
training/testing error decreases. On the Right: For the accuracy graph, it is clear that the accuracy of the DL model
increases with more iterations.
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Table 4
DCNN Score with different Settings.
Epochs Recall Precision F-measure Accuracy
DCNN (30) 91.74 90.14 92.15 93.76 %
DCNN (50) 93.74 94.50 95.00 95.80 %
DCNN (100) 95.76 95.99 96.56 97.66 %

Table 5

Comparative Analysis with other Studies.

Baseline Study

Technique

Accuracy Score

(Liu, Xiang, Qin, Ma,
Zhang, & Xiong,
2021)

(Elaraby, Hamdy,
Alanazi, 2022)
(Luaibi, Salman, &
Miry, 2021)
Proposed Study

Image recognition of citrus diseases using
CNN

Classification of citrus diseases using CNN +
AlexNet
Detection of citrus leaf diseases using CNN

Citrus leaves disease detection and classification
using a DCNN approach with data augmentation

87.28%

93.5%

91.75%

97.66%

Threats to Validity

The following shortcomings are observed for the suggested study:

1. Dataset Size: Due to the limited dataset size, a diverse dataset will further improve the accuracy

of the system.

2. Limited classes: The model may not generalize well to other classes if the number of classes is limited

in the training dataset.

3. Limited images: The model may not generalize well if the number of images per class is limited in the

training dataset.

4. Environmental conditions: the model performance may vary depending on the conditions under which
the images are taken (e.g., lighting, temperature, humidity).
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Conclusion

Deep learning methods such as convolutional neural networks (CNNs) are highly effective in detecting plant
diseases with high accuracy rates. The suggested DCNN model is capable of classifying diseases that affect
citrus leaves. It distinguishes the healthy leaf images from the infected leaf images. The proposed model
performs data acquisition, pre-processing, and application of the DCNN model to the acquired dataset into multiple
distinct classes. The DCNN module is composed of multiple convolutional and max pooling layers. While the
second convolutional layer concentrates on high-level characteristics, the first convolutional layer collects low-
level features. Coupled with MaxPool layers to downsample the feature matrix generated by the convolution
layer. The dropout layer randomly drops the identical weights of neurons to tackle the overfitting issue. Our
proposed model classifies citrus leaf diseases into Bacterial spot, Black spot, Canker, Citrus Powdery Mildew,
Greening, Melanose, and healthy images with an accuracy of 97.66%, outperforming the state-of-the-art deep
learning models. The proposed model can be further extended to mobile applications (IoT), which facilitates
farmers with prompt and timely messaging to adopt precautionary measures to take necessary actions to save the
crops. Real-time image capturing (sensory data) can be used for image extraction. To incorporate further hybrid
combinations of deep learning approaches, like combining CNN with LSTM or Bi-LSTM. The proposed work
can be extended further from leaf disease detection to other parts of plants, such as stems and flowers.
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